Kliknij tutaj --> 🔫 wiązania chemiczne przykłady i rozwiązania

Dwa główne typy wiązań chemicznych to wiązania jonowe i kowalencyjne. Wiązanie jonowe zasadniczo przekazuje elektron drugiemu atomowi uczestniczącemu w wiązaniu, podczas gdy elektrony w wiązaniu kowalencyjnym są równo dzielone między atomami. Jedyne czyste wiązania kowalencyjne występują między identycznymi atomami. Elektroujemność jest to liczba wiązań chemicznych, którą może utworzyć dany atom pierwiastka, łącząc się z innymi atomami w związku chemicznym. Pierwiastki z grupy 1, mają tylko jedną wartościowość i wynosi ona I, natomiast pierwiastki z grupy 2 mają zawsze wartościowość II. Są też wyjątki, jak np. glin (Al), który ma rozpoznaje związek na podstawie wiązania występującego między atomami. 2. Metoda i forma pracy. Pogadanka, pokaz, wykład, praca z całą klasą, praca indywidualna. 3. Środki dydaktyczne. Podręcznik, ryciny modeli wiązań spolaryzowanych, tabele wartości momentów dipolowych dla wybranych związków chemicznych. 4. Przebieg lekcji. III. Wiązania chemiczne. Oddziaływania międzycząsteczkowe. Uczeń: 1) określa rodzaj wiązania (jonowe, kowalencyjne (atomowe) niespolaryzowane, kowalencyjne (atomowe) spolaryzowane, donorowo‐akceptorowe (koordynacyjne)) na podstawie elektroujemności oraz liczby elektronów walencyjnych atomów łączących się pierwiastków. W zależności od rodzaju wiązania elektrony mogą być uwspólniane, oddane i przyjmowane przez poszczególne atomy . Oddziaływania międzycząsteczkowe to siły wiążące atomy i cząsteczki, o sile mniejszej niż wiązania chemiczne. Oddziaływania nie wpływają na konfigurację elektronową atomów. Typy wiązań. Przykłady Site De Rencontre Le Plus Populaire Au Québec. Wiązania Chemiczne Wiązanie chemiczne według klasycznej definicji to każde trwałe połączenie dwóch atomów. Wiązania chemiczne powstają na skutek uwspólnienia dwóch lub więcej elektronów pochodzących bądź z jednego, bądź z obu łączących się atomów lub przeskoku jednego lub więcej elektronów z jednego atomu na atom i utworzenia w wyniku tego tzw. pary jonowej. Wiązania wielokrotne i pojedyncze Do utworzenia typowego wiązania chemicznego potrzeba minimum dwóch elektronów, zwykle po jednym z każdego łączącego się atomu. Wiązanie, które tworzą dwa elektrony nazywa się wiązaniem pojedyczym. Gdy uczestniczących elektronów jest 4, mamy do czynienia z wiązaniem podwójnym, które jednak w istocie jest dwoma różnymi wiązaniami łączącymi te same atomy. Gdy dzielonych elektronów jest 6, mamy do czynienia z wiązaniem potrójnym. Wiązania pojedyncze, podwójne i potrójne występują dość powszechnie. Dużo mniej często spotykane są wiązania o większej krotności, niemniej istnieje kilkaset związków w których występują wiązania poczwórne oraz są też pierwsze doniesienia naukowe o istnieniu wiązań sześciokrotnych. Delokalizacja wiązań Wiele wiązań wielokrotnych jest zdelokalizowanych, tzn. tworzące je elektrony są uwspólniane przez więcej niż dwa atomy. Delokalizacja ta może przybierać albo formę rezonansu chemicznego tak jak to ma miejsce w np: związkach aromatycznych lub formę pasm orbitalowych - występujących zwłaszcza w kryształach metali (tzw. wiązanie metaliczne) ale również w niektórych rodzajach polimerów oraz sprzężonych dienów. Występowanie pasm zdelokalizowanych orbitali umożliwia powstanie pasm przewodnictwa, które nadają materiałom cechy przewodników elektrycznych. Podział wiązań ze względu na ich naturę Podział wiązań ze wględu na ich naturę wynika z odpowiedzi na pytanie, które w uporszczeniu brzmi: Gdzie znajdują się elektrony uwspólnianie w ramach tych wiązań? Podział ten jest bardzo nieostry, często dyskusyjny w przypadku wielu związków chemicznych i silnie zależy od przyjętych kryteriów, które są również często dyskutowane i powoli ewoluują. Dokładną naturę wiązań bada się złożonymi metodami fizykochemicznymi, takimi jak np. rentgenografia strukturalna, ESR, NMR, które umożliwiają tworzenie "map" gęstości elektronowej występującej wokół jąder atomów tworzących związki chemiczne. Ze względu na to, że wiązania chemiczne są w istocie zjwiskami kwantowymi pełen opis ich natury i odmian jest możliwy dopiero na poziomie opisu mechaniki kwantowej. Wiązanie atomowe (kowalencyjne niespolaryzowane) Wiązanie atomowe powstaje między dwoma, jednakowymi atomami (np.: dwoma atomami wodoru) lub atomami pierwiastków o róźnicy elektroujemności mniejszej od Elektrony uwspólnione tworzące wiązanie są dzielone dokładnie po "równo" między oboma atomami, więc wiązanie jest apolarne - nie wykazujące nierównosci w rozkładzie ładunku elektrycznego po stronie któregoś z atomów. Wiązanie kowalencyjne spolaryzowane Wiązanie kowalencyjne powstaje między dwoma atomami, których wzajemna różnica elektroujemnosci jest większa od ale mniejsza od 1,7. Elektrony uwspólnione tworzące wiązanie są przesunięte w stronę jednego z atomów, co powoduje, że wiązanie wykazuje większy ładunek ujemny po stronie jednego z atomów i mniejszy po stronie drugiego. Powoduje to, że wiązanie to ma cechy małego magnesu (tzw. własnosci dipolowe). Wiązania kowalencyjne można jeszcze podzielić na zwykłe, w których uwspólniane elektrony pochodzą w równej liczbie od obu atomów (jeśli jeden "daje" trzy elektrony, to drugi też "daje" trzy) oraz na wiązania koordynacyjne, w których tylko jeden atom jest donorem elektronów lub liczba elektronów, które "daje" jeden atom nie jest równa liczbie, którą daje drugi. Wiązania koordynacyjne mając często dokładnie taki sam charakter jak wiązania kowalencyjne. W wielu związkach, w których z rachunku elektronów wynika, że część wiązań jest formanie kowalencyjnych a inna część koordynacyjnych są one w rzeczywistości całkowicie nieodróżnialne, posiadają taką samą geometrię i energię i nie da się praktycznie ustalić, które są które. W wielu związkach chemicznych wiązania koordynacyjne daje się jednak wyraźnie wskazać i mają one pewne szczególne własności których zwykłe wiązania kowalencyjne nigdy nie mogły by mieć. Przykładem tego rodzaju wiązań są np te występujące w Pi kompleksach. Wiązanie jonowe Wiązanie jonowe powstaje między dwoma atomami, których wzajemna różnica elektroujemności jest bardzo duża. Elektrony zamiast się uwspólnić "przeskakują" na stałe do jednego z atomów. W wyniku tego jeden z atomów ma nadmiar ładunku ujemnego i staje się ujemnie naładowanym jonem (anionem) a drugi ma nadmiar ładunku dodatniego i staje się kationem. Oba atomy tworzą parę jonową (+)(-), która trzyma się razem na zasadzie przyciągania ładunków elektrostatycznych i może w sprzyjających warunkach ulegać dysocjacji elektrolitycznej. Na ogół, aby wiązanie się wytworzyło, różnica elektroujemności musi być większa lub równa 1,7 w skali Paulinga, jednak granica, przy której tworzy się wiązanie jonowe jest bardzo płynna, gdyż zależy ona od wielu różnych czynników. Np: we fluorowodorze różnica elektroujemności między fluorem a wodorem wynosi aż 1,9 a mimo to wiązanie F-H ma charakter kowalencyjny spolaryzowany. Wiązanie wodorowe Wiązanie wodorowe formalnie rzecz biorąc nie jest wiązaniem chemicznym, w tym sensie, że nie powstaje ono na skutek wymiany elektronów i jest zwykle dużo mniej trwałe od "prawdziwych" wiązań, jednak ten rodzaj oddziaływania również łączy ze sobą atomy. Wiązanie wodorowe polega na "dzieleniu" między dwoma atomami (np. tlenu) jednego atomu wodoru, tak, że atom wodoru jest częściowo połączony z nimi oboma. Można to też ująć w ten sposób, że atom wodoru jest powiązany z oboma atomami wiązaniami "połówkowymi", gdyż jedno normalne pojedyncze (czyli dwuelektronowe) wiązanie wodór-inny atom jest dzielone na dwa slabsze "półwiązania" inny atom-wodór i wodór-inny atom. Oddziaływania międzycząsteczkowe Oddziaływania międzycząsteczkowe to inne niż wiązania chemiczne siły wiążące atomy i cząsteczki. Podstawowa różnica między oddziaływaniami międzycząsteczkowymi a wiązaniami chemicznymi, polega na tym, że nie wiążą one atomów na tyle trwale, aby umożliwiało to uznanie powstałych w ten sposób struktur za związki chemiczne w pełnym znaczeniu tego terminu. Granica między oddziaływaniami międzycząsteczkowymi i wiązaniami jest jednak płynna. Np: wiązanie wodorowe - jeśli występuje w obrębie jednej cząsteczki jest często traktowane jak słabe wiązanie chemiczne, jeśli jednak wiąże ono dwie lub więcej cząsteczek w duże konglomeraty o zmiennym składzie, można je traktować jako oddziaływanie międzycząsteczkowe. Tworzeniem się tego rodzaju konglomeratów powiązanych rozmaitymi oddziaływania międzycząsteczkowymi zajmuje się chemia supramolekularna. Odpowiedzi blocked odpowiedział(a) o 12:37 kowalencyjnekowalencyjne spolaryzowanejonowewodorowe ∆=b²-4ac odpowiedział(a) o 12:40 Jeszcze koordynacyjne, ale to już wszystkie wiązania ze względu na moc. Masz jeszcze oddziaływania, np. wiązania wodorowe, oddziaływania van der Vaalsa, oddziaływania dipol-dipol. I potem można dzielić ze względu na związki, czy pierwiastki, jakie je tworzą, np. glikozydowe - w cukrach, peptydowe - w białkach, fosfodiestrowe - w kwasach nukleinowych, mostki disiarczkowe - w czym polegają to poszukaj na wikipedii, bo nie chce mi się tego kopiować ;p kowalencyjne spolaryzowanekowalencyjne niespolaryzowanejonowe xyz888 odpowiedział(a) o 16:00 Uważasz, że ktoś się myli? lub Ta strona korzysta z ciasteczek, aby świadczyć usługi na najwyższym poziomie. Dalsze korzystanie ze strony oznacza, że zgadzasz się na ich użycie. Polityka prywatności Wiązania chemiczne to oddziaływania pomiędzy atomami pierwiastków, prowadzące do bardziej lub mniej trwałego ich połączenia. W tworzeniu wiązań chemicznych uczestniczą elektrony walencyjne pierwiastków. W zależności od rodzaju wiązania elektrony mogą być uwspólniane, oddane i przyjmowane przez poszczególne atomy. Oddziaływania międzycząsteczkowe to siły wiążące atomy i cząsteczki, o sile mniejszej niż wiązania chemiczne. Oddziaływania nie wpływają na konfigurację elektronową atomów. Typy wiązań Przykłady Kowalencyjne niespolaryzowane by Jacek FH - Praca własna, CC BY-SA Kowalencyjne spolaryzowane by Lanzi, CC BY-SA Koordynacyjne Jonowe by Wdcf - Own work, CC BY-SA Metaliczne Wodorowe Dipol-dipol by Adam Rędzikowski - file:Dipole moments CC BY-SA Może Ci się przydać: Wiązania chemiczne Zobacz również Paliwa gazowe Powinowactwo elektronowe Szeregi homologiczne Wartości standardowych entropii i... Właściwości fizyczne niektórych... pH soków owocowych Zastosowanie izotopów promieniotwórczych Pochodne węglowodorów Rozpuszczalność gazów w wodzie w... Gęstość wody w zależności od temperatury Mieszaniny oziębiające Energia wiązania Długości wiązań Cząstki elementarne Energia jonizacji pierwiastków Rozwiązanie - Do udrażniania instalacji sanitarnych stosuje się preparaty zawierające wodorotlenek sodu. Oblicz objętość preparatu, którą należy odmierzyć, wiedząc, że jego gęstość wynosi 1,22 g/cm3, a masa powinna wynosić 6,1 dag. Rozwiązanie - Spirytus salicylowy stosowany do dezynfekcji jest sprzedawany w opakowaniach o pojemności 150 cm3. Jego gęstość wynosi 0,87 g/ jego masę. Rozwiązanie - Uczeń wsypał dwie łyżeczki cukru do szklanki z herbatą i uzyskał 0,25dm3 roztworu o masie 260g. Oblicz gęstość roztworu herbaty z cukrem. Podaj wynik w g/cm3. Rozwiązanie - W zlewce znajdują się trzy niemieszające się ciecze o gęstościach: I - 0,785 g/cm3, II - 1, 023 g/cm3 i III 1,480 g/cm3. Wpisz na liniach wartości gęstości odpowiadające poszczególnym cieczom. Rozwiązanie - Poniższe fotografie przedstawiają świeczkę parafinową w wodzie i w oleju. Na podstawie położenia świeczki napisz, która substancja - woda czy olej - ma większą gęstość. Rozwiązanie - Zbadaj właściwości dwóch dowolnie przez siebie wybranych substancji często spotykanych w gospodarstwie domowym(oprócz soli kuchennej i cukru). Określ właściwości tych substancji. Rozwiązanie - Na podstawie opisów rozpoznaj substancje. Napisz ich nazwy. Rozwiązanie - Uzupełnij schemat, wpisując odpowiednie przykłady właściwości substancji. Rozwiązanie - Uzupełnij tabelę, wpisując określenia właściwości wymienionych substancji. Rozwiązanie - Uzupełnij zdania. Ciało fizyczne to Rozwiązanie - Jest substancją stałą o żółtej barwie i charakterystycznym zapachu. Nie rozpuszcza się w wodzie. Jest niemetalem. Co to za substancja? Rozwiązanie - Jeden karat to jednostka stosowana do określenia masy kamieni szlachetnych wynosi 0,2g. Oblicz ile gramów ważył diament o masie 560 karatów. Rozwiązanie - Dlaczego niektóre metale ulegają niszczeniu? Rozwiązanie - Uzupełnij tabelkę: nazwa szkła laboratoryjnego: zastosowanie w laboratorium: Rozwiązanie - Ogrzewając 43,3 g tlenku rtęci otrzymano 2,24 dm3 tlenu oraz rtęć. Oblicz masę tlenu wiedząc że gęstość tlenu wynosi 1,43g/dm3. Rozwiązanie - Oblicz masę płytki z aluminium o objętości 200cm3 jeśli gęstość aluminium wynosi 2,7 g/cm3 Rozwiązanie - Oblicz masę sześcianu o krawędzi 2cm, wykonanego z miedzi, wiedząc, że gęstość miedzi wynosi 8,93 g/cm3. Rozwiązanie - Do cylindra miarowego nalano 100cm3 wody i wrzucono kulkę wykonaną z cyny o masie 43,28g. Stwierdzono, że objętość wody w cylindrze miarowym zwiększyła się do 106cm3. Oblicz gęstość cyny. Rozwiązanie - Gorzka czekolada zawiera 32% tłuszczu. Oblicz, ile gramów tłuszczu dostarcza się organizmowi po zjedzeniu 1/4 tabliczki czekolady o masie 200g. Rzowiązanie - Sztabka metalowa ma masę jej metalu wynosi 8g/cm3. Rozwiązanie - Przyporządkuj właściwości fizyczne do podanych substancji: tlenu, wody i siarki.

wiązania chemiczne przykłady i rozwiązania